Saturday, April 26, 2014

Actual Coinbase Client HTTP (Get & Post)

I like coinbase, seems like a pretty robust API, but sadly there are documentation bugs and they arent so hot at replying to support issues. After some thinking I figured out why the API calls were thinking they were not JSON.
# there is a problem with the coinbase python example
# at https://coinbase.com/docs/api/authentication where they
# fail to add the content type header to the POST action
# this is the actual implementation
def get_http(self, url, body=None):
opener = urllib2.build_opener()
nonce = int(time.time() * 1e6)
message = str(nonce) + url + ('' if body is None else body)
signature = hmac.new(settings.COINBASE_API_SECRET, message, hashlib.sha256).hexdigest()
opener.addheaders = [('ACCESS_KEY', settings.COINBASE_API_KEY),
('ACCESS_SIGNATURE', signature),
('ACCESS_NONCE', nonce)]
try:
response = opener.open(urllib2.Request(url,body,{'Content-Type': 'application/json'}))
return response
except urllib2.HTTPError as e:
print e
return e

Thursday, April 03, 2014

Using Mahout For Linear Regression

The goal here is to create the most simple of probability monitoring.
package com.claytantor.mahout.test.app;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.mahout.classifier.sgd.L1;
import org.apache.mahout.classifier.sgd.OnlineLogisticRegression;
import org.apache.mahout.math.DenseVector;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.google.common.collect.Lists;
public class OnlineLROne {
public static class Point {
public int x;
public int y;
public Point(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public boolean equals(Object arg0) {
Point p = (Point) arg0;
return ((this.x == p.x) && (this.y == p.y));
}
@Override
public String toString() {
// TODO Auto-generated method stub
return this.x + " , " + this.y;
}
}
public static Vector getVector(Point point) {
Vector v = new DenseVector(3);
v.set(0, point.x);
v.set(1, point.y);
v.set(2, 1);
return v;
}
/**
* @param args
*/
public static void main(String[] args) {
Logger logger = LoggerFactory.getLogger(ReccomenderOne.class);
logger.info("Hello World");
Map<Point, Integer> points = new HashMap<Point, Integer>();
points.put(new Point(0, 0), 0);
points.put(new Point(1, 1), 0);
points.put(new Point(1, 0), 0);
points.put(new Point(0, 1), 0);
points.put(new Point(2, 2), 0);
points.put(new Point(8, 8), 1);
points.put(new Point(8, 9), 1);
points.put(new Point(9, 8), 1);
points.put(new Point(9, 9), 1);
OnlineLogisticRegression learningAlgo = new OnlineLogisticRegression(2,
3, new L1());
// this is a really big value which will make the model very cautious
// for lambda = 0.1, the first example below should be about .83 certain
// for lambda = 0.01, the first example below should be about 0.98
// certain
learningAlgo.lambda(0.1);
learningAlgo.learningRate(4);
System.out.println("training model \n");
final List<Point> keys = Lists.newArrayList(points.keySet());
// 200 times through the training data is probably over-kill. It doesn't
// matter
// for tiny data. The key here is total number of points seen, not
// number of passes.
for (int i = 0; i < 200; i++) {
// randomize training data on each iteration
Collections.shuffle(keys);
for (Point point : keys) {
Vector v = getVector(point);
learningAlgo.train(points.get(point), v);
}
}
learningAlgo.close();
// now classify real data
Vector v = new RandomAccessSparseVector(3);
v.set(0, 0.5);
v.set(1, 0.5);
v.set(2, 1);
Vector r = learningAlgo.classifyFull(v);
System.out.println(r);
System.out.println("ans = ");
System.out.printf("no of categories = %d\n",
learningAlgo.numCategories());
System.out.printf("no of features = %d\n", learningAlgo.numFeatures());
System.out.printf("Probability of cluster 0 = %.3f\n", r.get(0));
System.out.printf("Probability of cluster 1 = %.3f\n", r.get(1));
v.set(0, 4.5);
v.set(1, 6.5);
v.set(2, 1);
r = learningAlgo.classifyFull(v);
System.out.println("ans = ");
System.out.printf("no of categories = %d\n",
learningAlgo.numCategories());
System.out.printf("no of features = %d\n", learningAlgo.numFeatures());
System.out.printf("Probability of cluster 0 = %.3f\n", r.get(0));
System.out.printf("Probability of cluster 1 = %.3f\n", r.get(1));
// show how the score varies along a line from 0,0 to 1,1
System.out.printf("\nx\tscore\n");
for (int i = 0; i < 100; i++) {
final double x = 0.0 + i / 10.0;
v.set(0, x);
v.set(1, x);
v.set(2, 1);
r = learningAlgo.classifyFull(v);
System.out.printf("%.2f\t%.3f\n", x, r.get(1));
}
}
}